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Abstract-A new method is devised to obtain a low dimensional dynamic model of flow reactors governed 
by nonlinear partial differential equations. This is based on the Karhunen-Loeve decomposition which is 
a technique of obtaining empirical eigenfunctions from the experimental or numerical data of a system. 
These empirical eigenfunctions are then employed as a basis set of a Galerkin procedure to reduce the 
distributed parameter system to a lumped parameter system in the optimal way in the sense that the degree 
of freedom of the resulting lumped parameter system is minimum. Flow reactors such as combustors, 
incinerators and CVD reactors cannot be described appropriately by conventional assumptions such as 
well-mixed flow or plug flow, and we need accurate flow patterns and convection-conduction/diffusion 
rates before characterizing or predicting their performance. Because the governing equations of these 
processes are nonlinear partial differential equations and, moreover, most practical flow reactors are of 
irregular shapes, the traditional Galerkin methods or orthogonal collocation are never feasible to lump 
these systems for the purpose of control or parameter estimation. But the Karhunen-Lotve Galerkin 
procedure suggested in the present paper can easily reduce these nonlinear partial differential equations 
defined on irregular domains into reliable dynamic models with a few degrees of freedom, which may later 

be employed in the parameter estimation or reactor control. Copyright 0 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

In recent years there has been an increased emphasis 
on the study of flow reactors. A flow reactor is an 
empty vessel through which reactants pass to undergo 
various chemical reactions. Sometimes a catalyst is 
coated on the inner wall to facilitate chemical reaction 
or induce deposition of products. Examples of flow 
reactors are various combustors, internal combustion 
engines, incinerators for the treatment of toxic 
materials and chemical vapor deposition (CVD) reac- 
tors for the manufacturing of semiconductor chips. 
These flow reactors distinguish themselves from ideal- 
ized simple reactors [l] such as continuously stirred 
tank reactors or plug flow reactors, in the sense that 
flow patterns must be accurately taken into con- 
sideration before predicting their performance appro- 
priately. The flow patterns in most industrial flow 
reactors, especially at high Reynolds numbers, have 
recirculation zones and can be approximated neither 
by perfectly mixed flow nor one-dimensional plug 
flow. Because mixing of chemical species and heat 
transfer rate depend crucially on fluid flow, a reliable 
model of flow reactors must include detailed flow pat- 
terns. If accurate flow patterns are available, the tem- 
perature and concentration distributions are obtained 
by solving the convection-conduction and con- 
vection-diffusion equation, respectively. In principle, 
these flow patterns can be calculated by the solution 
of the Navier-Stokes equations using numerical tech- 
niques such as the finite volume method [2]. The 
resulting flow fields are reliable not only for laminar 

flows, but also for turbulent flows, as long as appro- 
priate turbulence models are employed. 

The real difficulty in the design and operation of 
flow reactors rests on appropriate dynamic modeling 
of the system for the purpose of control, parameter 
estimation and optimization. Even though we assume 
a steady flow field, the governing equations for heat 
and mass transfers are usually nonlinear distributed 
parameter systems defined on complicated domains. 
But it is not easy to get practical dynamic models of 
distributed parameter systems which can be 
implemented without undue complications, even for 
linear distributed parameter systems [3]. The degree 
of freedom of distributed parameter systems is essen- 
tially infinite and the relevant mathematical theory 
is too complicated to be implemented in industry. 
Moreover a satisfactory mathematical theory of non- 
linear distributed parameter system is still lacking. 
Due to these difficulties many engineers rely on lump- 
ing techniques to model distributed parameter 
systems. These techniques reduce a distributed par- 
ameter system to a lumped parameter system with a 
finite number of degrees of freedom by using eigen- 
functions of the system. The resulting lumped par- 
ameter systems may be used in control, or parameter 
estimation of the original distributed parameter sys- 
tems rather easily with the help of relatively well 
advanced mathematical techniques for the former. 
Typical examples of these lumping techniques are 
Galerkin procedure and orthogonal collocation. But 
the eigenfunctions of a given system must be secured 
before applying these methods, so the applicability 
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NOMENCLATURE 

spectral coefficient premultiplying the 
jth eigenfunction when the concentration 
field is represented as a linear 
combination of eigenfunctions 
mass diffusivity 
reference value of mass diffusivity 
activation energy 
reference value of activation energy 
inlet temperature 
matrix defined in equation (32~) 
maximum index number in the .Y- 
direction 
chemical reaction rate constant 
frequency factor 
reference value of frequency factor 
maximum index number in the :- 
direction 
two point correlation tensor of 
snapshots ; equation (6) 
vector defined in equation (32a) 
number of snapshots employed in the 
Karhunen-Loeve decomposition 
matrix defined in equation (32d) 
pressure 
matrix defined in equation (32b) 
gas constant 
vector defined in equation (32e) 
time [s] 
temperature field 
average value of temperature ( = 750) 
temperature field with homogeneous 
boundary conditions 
temperature field with inhomogeneous 
boundary conditions 
.x-component of the velocity vector v 
velocity vector 
snapshots from a dynamic system 

z-component of the velocity vector v 
concentration (mass fraction) of the 
species A 
concentration field with homogeneous 
boundary conditons 
concentration field with 
inhomogeneous boundary 
conditions. 

Greek symbols 
% inlet concentration (mass fraction) 
mx1 eigenvector ; equation (10) 
ti thermal diffusivity 
&.Xf reference value of thermal diffusivity 

;.,\ kth eigenvalue 

Ii viscosity 

0 density 

@b, kth empirical eigenfunction of 
concentration 

‘Ph kth empirical eigenfunction of 
temperature 

n system domain. 

Superscripts 
0 initial value 
ret reference value 
T transpose. 

Subscripts 
avg average value 
exact exact solution obtained by means of 

finite difference methods 

; 
index in the x-direction 
index in the z-direction 

KLG solution obtained by means of 
the Karhunen-Loeve Galerkin 
procedure. 

of these conventional techniques is limited to linear control strategies such as model predictive control [4] 
distributed parameter systems defined on regular have been devised to overcome these difficulties, but 
domains (separable domains). Still another method is they are essentially empirical models based on the 
required to lump the distributed parameter systems input and output of a given system and may become 
defined on irregular domains. For the control and unstable as the set point (operating condition) of the 
parameter estimation of these distributed parameter system changes, thus requiring the design of a new 
systems of the complex domain such as the flow reac- model whenever the operation condition varies. 
tors under consideration, we may reduce the original Although the technique of model predictive control 
system of infinite degrees of freedom to one with a has the merit of small degrees of freedom, it has limi- 
finite degree of freedom by discretizing it with the help tation in robustness because it is based on empirical 
of finite difference methods or finite element methods, relations. Moreover, the governing equation itself is 
but the resulting number of degrees of freedom is far never exploited in this kind of technique, losing much 
larger than that of the Galerkin procedure or orthog- of the important physical information that we have 
onal collocation, rendering the resulting lumped par- already secured about the given distributed parameter 
ameter system inapplicable in industry. Recently, new system. 
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In the present work we examine the feasibility and 
efficiency of the Karhunen-Loeve decomposition tech- 
nique [S, 61 in the low dimensional modeling of flow 
reactors, with the eventual purpose of applying this 
low dimensional model to the control and parameter 
estimation. The Karhunen-Loeve decomposition (K- 
L decomposition) is a technique enabling a stochastic 
field to be represented with a minimum degree of 
freedom [7,8]. If the Karhunen-Loeve decomposition 
is applied to a given stochastic field, we get a set of 
empirical eigenfunctions. When we want to reproduce 
that stochastic field with a certain criterion of accu- 
racy-it can be represented with a minimum degree 
of freedom when employing these empirical eigen- 
functions [9, lo]. The Galerkin procedure employ- 
ing these empirical eigenfunctions as a basis set easily 
reduces the linear or nonlinear distributed parameter 
systems to lumped parameter systems with a small 
number of degrees of freedom, and its applicability is 
not limited, regardless of the geometric complexity of 
the system. Moreover, contrary to techniques such as 
model predictive control, this technique is not based 
on the empirical input-output relation of the system, 
but uses the governing equations exactly, thus yielding 
a dynamic model with sufficient robustness not affec- 
ted by the changes in operating conditions. 

In the present paper, we shall introduce the 
Karhunen-Loke decomposition, and then apply it 
to a flow reactor of irregular shape to get empirical 
eigenfunctions that most efficiently represent the 
system. This set of empirical eigenfunctions is used as 
a basis function of Galerkin procedure to lump the 
convection-conduction or convection-diffusion equa- 
tions with chemical reaction. The resulting lumped 
parameter model is used to obtain temperature and 
concentration distribution of the system when the inlet 
temperature or concentration changes randomly, and 
then these temperature and concentration fields are 
compared with the exact results obtained by a finite 
difference solution of the original governing equations 
to demonstrate the efficiency and accuracy of the 
Galerkin procedure employing the empirical eigen- 
functions of the Karhunen-Loeve decomposition. 
This whole procedure or technique may be called Kar- 
hunen-Loeve Galerkin procedure, in abbreviation, 
K-L Galerkin procedure. The K-L Galerkin tech- 
nique can be applied to the control and parameter 
estimation of many other partial differential equations 
such as Navier-Stokes equation, as well as the con- 
vection-conduction equation treated in the present 
work. 

2. THEORY 

In this section, we explain the Karhunen-Lotve 
decomposition and its applicability to the control and 
parameter estimation of distributed parameter 
systems. As an example of distributed parameter sys- 
tems a flow reactor of irregular shape is considered. 
The governing equations of this system are the con- 

vectionconduction equation and the convection- 
diffusion equation with chemical reaction. 

2.1. The Karhunen-Lotve decomposition 
To make this paper self-contained, we introduce the 

essence of the Karhunen-Loeve decomposition. The 
Karhunen-Loeve decomposition, expressed briefly, is 
a method of representing a stochastic field with a 
minimum number of degrees of freedom [5]. As a 
means of explaining the Karhunen-Loeve decompo- 
sition we select N arbitrary irregularly shaped func- 
tionswithn= 1,2,..., N. From now on, we call the 
irregular shapes of these functions {v,} ‘snapshots’. 
The issue is how to obtain the most typical or charac- 
teristic structure 4(x) among these snapshots {v,}. To 
make the mathematical development brief, the fol- 
lowing notations are introduced : 

v,(x, y) a function defined in a function space 

(1) 

{v,} ensemble of snapshots (2) 

inner product in the function space (3) 

ensemble average of snapshots. 

(4) 

Then our objective is equivalently expressed so as to 
find a function 4(x) such that 

maximize I = “$ ‘$‘. 

We introduce the two point correlation function 
defined as, 

K(x,x’) = (v,(x)v,(x’)) = f i v,(x)v~(x’). (6) 
n-l 

It can be shown that the maximization problem of 
equation (5) is reduced to the following eigenvalue 
problem of the integral equation (7) [lo] : 

s K(x, x’)c#I(x’) dx’ = n&x). (7) 
n 

Namely, the function that maximizes 1 of the equa- 
tion (5) is equivalent to the eigenfunction of equation 
(7) with the largest eigenvalue. Usually this kind of 
integral equation can be solved by means of Schmidt- 
Hilbert technique or method of snapshot [6]. We 
assume the eigenfunction 4(x), a linear combination 
of snapshots as follows : 
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Substituting this into equation (7) yields 

ai ri (_Y’) d-r’ = Xc ZJ,, (.u) 
,, 

(9) 

Equation (9) may be expressed in the following 
form of a matrix eigenvalue problem : 

C,,i ai = ix,, . (10) 

where 

The above matrix C,,, is symmetric and positive 
definite. The eigenvector of the matrix eigenvalue 
problem. equation (IO), is then substituted into equa- 
tion (8) to generate the empirical eigenfunctions cb. 
Let’s express the eigenvalues, A, > i, > > i, and 
the corresponding eigenfunctions &,, 4:. .cj, in the 
order of magnitude of the eigenvalues. The eigen- 
function 4, corresponding to the largest eigenvalue i., 
is the most typical structure of the members of the 
snapshots {cpjj and the eigenfunction 4: with the next 
largest eigenvalue L, is the next typical structure. and 
so forth. 

These empirical eigenfunctions C/I can represent the 
system in the most efficient way [7. 81. and when 
employed as the basis functions of a Galerkin pro- 
cedure [IO. I I] the system can be represented with the 
minimum number of degrees of freedom. 

2.2. Thr .s,~~.strtn und gowr-rtiyq ryualiom 
The governing equations of a two-dimensional 

planar flow reactor of unit length with irregular 
boundaries shown in Fig. 1 are used to demonstrate 
the Karhunen-Lo&e Galerkin procedure. The 
boundary denotes the centerline of the symmetry. The 
flow field. which is assumed to be steady, is obtained 
by solving the following incompressible Navier- 
Stokes equation : 

where u and M‘ are the .Y- and I- component of the 
velocity field Y, P the pressure, p the density. and /i 

center line 

0.25 

,* 

Fig. I. System under consideration. Only the lower part 
below the symmetric line is shown. The temperature and 
concentration fields have Neumann boundary conditions at 
the wall. Either the inlet temperature or the inlet con- 
centration is changed to control the outlet concentratton. 
The streamlines are obtained for the case of RE = 100 at 

steady state. 

the viscosity. The relevant boundary conditions are as 
follows : 

inlet u = Cf( = 100) 11’ = 0 (15) 

center line 
?U 
- = 0 
(7: 

r,‘ = 0 (16) 

C’U i JI‘ 
outlet --=0 -~-=O 

?.\- (7-Y (17) 

all other boundaries 

to obtain a steady-state flow field at the Reynolds 

u = )I’ = 0. (18) 

number of 100, when the length scale is the length of 

The SIMPLE algorithm of Patankar [2] is employed 

the reactor, 1. The streamline of this flow field is also 
shown in Fig. I when 82 x 82 grids are employed. 
Using this flow field we now concentrate on the con- 
vection-diffusion-reaction of a reactant A. Let’s 
assume that the reactant A decays according to the 
following first-order reaction : 

where, k is the reaction constant, k,, the frequency 
factor, E the activation energy and R the gas constant, 
The governing equations of the temperature and con- 
centration fields are the following convection-con- 
duction and convection-diffusion equations with a 
source term due to chemical reaction. We neglect heat 
generation arising from the chemical reaction. 
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where T is the temperature field, w+, is the con- 
centration (mass fraction) of the species A, K the ther- 
mal diffusivity and DA the mass diffusivity. The 
boundary conditions for T and wA are given as, 

mass fraction field wi is obtained using equations (27) 
and (28a, b). The governing equation for wi is 
obtained by substituting equation (26) into equation 
(21) in the following form : 

inlet T = T,, wA = wA,,” (22) aw; 
at +V*wh,v = DAV2w~+uD,,V2w; 

centerline (23) 

outlet (24) 

all other boundaries 
aT 
G = 0 2 = 0, (25) 

where a/an denotes the normal derivative at the wall. 
We shall change the outlet concentration of the 

reactant A by adjusting the inlet concentration of A 
(case A) or by adjusting the inlet temperature of the 
feed stream (case B). For both cases, the results from 
the dynamic models based on the Karhunen-Loeve 
Galerkin method shall be compared with the exact 
results from the finite difference solution to assess the 
performance of the Karhunen-Loeve Galerkin pro- 
cedure. 

2.2.1. Case A : control of the outlet concentration by 
adjusting the inlet concentration. In this subsection, we 
develop equations for the case where the inlet con- 
centration is adjusted to control the outlet concen- 
tration. Since the temperature boundary condition at 
the wall is adiabatic, the temperature field assumes a 
constant value over the whole domain at the steady 
state if the heat of the reaction is neglected. Because 
the chemical species cannot penetrate through the 
reactor walls, the appropriate concentration bound- 
ary condition is also of Neumann type. The inlet mass 
fraction (concentration) of A is assumed to have an 
arbitrary value between 0.02 and 0.1. The con- 
centration (mass fraction) is divided into two parts, 
wa and wk. 

w* = w;-t-crw;, (26) 

where wi satisfies the homogeneous boundary con- 
ditions and wi satisfies the inhomogeneous boundary 
conditions, and o! represents the inlet mass fraction. 
The w$, is forced to satisfy the following equation and 
boundary conditions : 

v. wI ” = pqpw, 
A A A 

_yefe-Eyw 
TO NWfs (27) 

inlet wf, = 1 (2ga) 

all other boundaries : 
aw:, 
_ = 0, 
an (28b) 

where OF’, kz’, E”‘, Tavs are reference values to make 
the inhomogeneous solution wi independent of DA, 
k,,, E, T of the system under consideration. With the 
steady-state flow field shown in Fig. 1, and with the 
values of D;‘, kzf, Eref and Tava being 1, 1000, 5000 

-k,, e-“‘“‘)wf4] da- $ 
s 

c$~w!, dR. (32e) 
n 

The set of ordinary differential equations, equation 
(31), may be solved by means of a fourth-order 
Runge-Kutta method [ 121. Since this dynamic model 
of ordinary differential equations is obtained from the 

and 750, respectively, the resulting inhomogeneous Galerkin procedure employing the empirical eigen- 

In equation (29), the temperature field is a constant 
(i.e. the inlet value) as mentioned previously. A set of 
wi fields are obtained by solving equation (29), while 
imposing a step change on a from 0.02 to 0.1, and 
they are used as snapshots for the Karhunen-Loeve 
decomposition to generate empirical eigenfunction 
&s. A Galerkin procedure employing these empirical 
eigenfunctions as a basis set is then applied to the 
present system of the convection-diffusion equation 
with chemical reaction defined on a complex domain 
to convert it to a small number of ordinary differential 
equations. In the beginning, we represent wk as a 
linear combination of the empirical eigenfunctions 

wi = z ai& (30) 

where the & are indexed in the order of magnitude of 
the corresponding eigenvalues. Substituting equation 
(30) into equation (29) and applying the Galerkin 
procedure, we find 

Ml% +~Q,~ai+~H,a,+~~,,a, = s, (31) 

where 

M,= #dS;Z 
s 

(32a) 

Q,l = ~/#&$+w~d0 (32b) 

H, = DA (32~) 

N, = k,, 
s 
n 4j+iee4RTdCJ (32d) 

S, = t( I 4j[(DA - D~‘)V2w~ + (kzf e-E”“RTw 
R 
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functions (i.e. the Karhunen-Loeve Galerkin pro- tions of a few degrees of freedom, which constitute 
cedure), the degree of freedom or the number of equa- the low dimensional dynamic model of the flow reac- 
tions is usually very small. tor for the case B. 

2.2.2. Case B: control @‘outlet concentration (mass 
,fiaction) by adjusting the inlet temperature. On the 
contrary to the previous case (case A), we change the 
inlet temperature to adjust the reaction rate to control 
the outlet concentration in this subsection. For the 
case A of subsection 2.2. I, the temperature is a con- 
stant over the whole reactor, but in the present situ- 
ation, the temperature field has spatial and temporal 
variations due to the inlet temperature changes. Both 
the temperature and concentration (mass fraction) 
fields can be predicted accurately by using the Kar- 
hunen-Loeve Galerkin procedure as described in the 
sequel. The governing equation for the temperature 
field, equation (20), is treated in the KarhunenLoeve 
Galerkin procedure as follows. First, as before, we 
divide the temperature field T into two parts, T’ and 
Th. 

3. RESULTS 

In this section, we describe how to take snapshots 
from the solution of the convection<onduction and 
convectiondiffusion equations considered in the pre- 
sent work, and investigate the properties of the empiri- 
cal eigenfunctions obtained from the application of 
the KarhunenLoeve decomposition to these snap- 
shots. Furthermore, the accuracy and efficiency of the 
low dimensional dynamic model obtained from the 
Galerkin procedure employing these empirical eigen- 
functions as basis functions, are examined by com- 
paring their solutions with those of finite difference 
method applied to the original convection*on- 
duction and convection-diffusion equations with 
chemical reaction. 

T = Th+JT’. (33) 

where Th satisfies the homogeneous boundary con- 
ditions and T’ satisfies the inhomogeneous boundary 
conditions, andfdenotes the inlet temperature. Then 
T’ is forced to satisfy the following equation and 
boundary conditions : 

3.1. Empirical eigenfunctions obtained ,from the Kar- 
hunen-Lo&e decomposition 

v. TIv = K=fV2 T’ 

inlet T’ = 1 

(34) 

(35a) 

Before the empirical eigenfunctions from the Kar- 
hunen-Loeve decomposition can be useful, the snap- 
shots must be representative of the dynamic charac- 
teristics of the system under consideration. The 
dynamic model’s aim is to predict exactly the tem- 
perature and concentration fields of the flow reactor 
when the inlet concentration or the inlet temperature 
changes randomly. Thus, the snapshots have been 
obtained in the following way. We shall explain this 
procedure in detail only for case A. Following almost 
the same procedure one can obtain snapshots and 
empirical eigenfunctions for case B. We take as an 
initial concentration distribution of PV~ the steady- 
state situation when the inlet concentration c( is 0.02. 
Next, we increase the inlet concentration c( to 0. I and 
solve equation (29) to obtain the concentration dis- 
tributions at an appropriate time interval until a new 
steady state is reached, and use these concentration 
distributions as snapshots of case A, i.e. the ensemble 
members. The temperature field has a constant value 
of 750 during this procedure. The range of I (i.e. 
0.02 _ 0.1) is taken to be the same as that of the 
permissible inlet concentration of the actual system 
under consideration. Initially a concentration bound- 
ary layer with a steep concentration gradient appears 
near the inlet, and the concentration gradient becomes 
less steep as time goes on. Thus the frequency to 
take snapshots should be high initially and it may be 
decreased as time elapses to obtain a set of snapshots 
that fully characterize the concentration boundary 
layer formed during the process. The values of par- 
ameters adopted are those of the reference values, i.e. 
D, = Dzf = 1, k,, = 6:’ = 1000. E = Eref = 5000. At 
steady state the wi becomes zero over the whole 
domain. Table 1 indicates the moments when the 
snapshots are taken. The time intervals are chosen 
such that the snapshots must contain important 

all other boundaries 
$T’ 
- = 0. 
dn 

(35b) 

The solution of equations (34) and (35a, b) is easily 
found to be a uniform value of 1. The governing 
equation for Th is then obtained by substituting equa- 
tion (33) into equation (20) as follows : 

(36) 

The governing equations for the concentration field 
are the same as those presented in the previous sub- 
section (case A), i.e. equations (26)-(29). except the 
da/dt term disappear in equation (29) because the inlet 
concentration does not change in the present case 
(case B). After imposing a step change on the inlet 
temperaturef from 500 to 1000, we solve equations 
(29) and (36) to obtain EJ~ and Th fields at appropriate 
time intervals, and use them as concentration and 
temperature snapshots, respectively. To each of these 
sets of snapshots, the Karhunen-Loeve decompo- 
sition is applied to yield the concentration eigen- 
functions C$~S and the temperature empirical eigen- 
functions ‘p/s. These sets of empirical eigenfunctions 
are then employed as the basic sets of the Karhunen- 
Loeve Galerkin procedure to reduce equations (29) 
and (36) into two sets of ordinary differential equa- 
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Table 1. Time interval and number of snapshots for case A and case B ; e.g. for case A when we take 400 snapshots, 200 
snapshots are obtained at the time interval 5 x 10e5 during time period 0.000~1 x lo-* s, and another 100 snapshots are 

obtained at the time interval of 1 x lo-“ during time period 1 x lo-*-2 x lo-*, and so forth 

Case A Case B 

Concentration Temperature Concentration 
Time Time Time 

Number Time (s) interval Time (s) interval Time (s) interval 
- 

100 O&5 x 1o-3 5 x 1om5 0.0-I x lo-* 1 x 1o-4 0.0-2.5 x lo-* 2.5 x 1O-4 
100 5 x 1om3-1 x 1o-2 5 x 1o-5 1 x 10-2-4 x 1o-2 3 x 1o-4 2.5 x 10-2-7.5 x 1o-2 5 x 1om4 
100 1 x 10-2-2x lo-* 1 x 1om4 4x lo-*-l x 10-l 6 x 1o-4 7.5 x lo-*-2.0 x 10-l 1.25 x 1O-3 
100 2 x lo-‘5 x lo-* 3 x 1om4 1 x 10-‘-5x 10-l 4 x 10-J 2.0 x lo-‘4.0 x 10-l 2 x 1o-3 

-___ 

dynamic characteristics of the system, especially the 
formation and decay of the concentration boundary 
layer near the inlet. Table 1 says that when we take 
400 snapshots, 200 of them are obtained at the time 
interval of 5 x lo-’ during 0.0000 - 0.0100 s and an 
additional 100 snapshots are taken at the time interval 
of 1 x 10M4 during 0.0100 - 0.0200 s, and so forth. 
Figure 2(a-d) shows some of these snapshots at the 
time indicated. At t = 5 x 10e4 we can observe the 
development of a concentration boundary layer due 
to the rapid change of concentration at the inlet, and 
as time goes on the concentration gradient near the 
inlet becomes less steep and eventually the con- 

(4 

centration field approaches the steady-state value of 
zero. We can also observe the movement of a con- 
centration wave near the inlet. 

The Karhunen-Lotve decomposition is then 
applied to these snapshots to yield empirical eigen- 
functions. Figure 3(a-d) depicts the first, second, sev- 
enth and eighth eigenfunction in the order of mag- 
nitude of the corresponding eigenvalues when 400 
snapshots have been adopted. Among the four eigen- 
functions shown in Fig. 3, the eigenfunctions with 
large eigenvalues [Fig. 3(a, b)] take the shape of 
smooth, large scales that are typical structures among 
members of the snapshots. These two eigenfunctions 

Fig. 2. The snapshots (concentration field wi with homogeneous boundary conditions) at various time 
instants ; (a), (b), (c) and (d) correspond to 5 x lo-“, 5 x lo-‘, 1 x lo-’ and 2 x 10m2 s, respectively. 
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----___ 
---_-~ 

_-‘-,___.._ ._ 

(b) 

fig. 3. Dominant eigenfunctions (case A) obtained from 400 snapshots of Table I. (a) Normalized elgen- 
value = 0.88755. (b) normalized eigenvalue = 8.2568 x IO ‘, (c) normalized eigenvalue = 4.4789 x 10m-4, 

(d) normalized eigenvalue = 1.8245 x 10m4. 

can also represent the moving concentration wave 
near the inlet region. But as the magnitude of eigen- 
value decreases. the corresponding empirical eigen- 
functions have a tendency to have small scale shapes. 
In other words, the empirical eigenfunctions with 
large eigenvalues represent the global concentration 
distribution of the system and the distinguished 
characteristic of the moving concentration wave, and 
empirical eigenfunctions of smaller eigen- 
values represent concentration boundary layer caused 
by the rapid concentration change near the inlet and 
other small scale shapes not captured by eigen- 
functions of large eigenvalues. 

We may almost follow the same procedure to obtain 
empirical eigenfunctions for temperature and con- 
centration fields for case B. Also indicated in Table I 
are the instants when the temperature and con- 
centration snapshots are taken in case B. 

3.2. The &numic model bused on the Kurhunen~ Lo&e 
Gulerkin (K-L Galerkin) method 

To investigate the accuracy of the dynamic models 
for case A and case B, we examine the cases where the 
inlet concentration x experiences a random change 
between 0.02 and 0.1 for case A, and the inlet tem- 
perature,f’experiences a random change between 500 

and 1000 for case B, respectively. This can serve as a 
preliminary step toward the application of the present 
dynamic models to real control problems. The 
dynamic models for case A and case B have been 
constructed by applying a Galerkin procedure to 
equation (29) employing I5 concentration eigen- 
functions (case A), and to equation (29) (with 
icc/?t = 0) and equation (36) with I5 concentration 
and 15 temperature eigenfunctions (case B). respec- 
tively. Afterwards, if not mentioned otherwise, it will 
be assumed that we employ the empirical eigen- 
functions obtained from the 400 snapshots of 
Table I. 

3.2.1. Randomly chunging inlet concentration (ruse 
,4) or inlet temperature (cusp B). In this subsection we 
consider the case where the inlet concentration c( (case 
A) or the inlet temperature f’ (case B) changes 
randomly. 

The low dimensional dynamic model for the case 
A. equation (31), has been solved when the inlet con- 
centration LX changes randomly between 0.02 and 0.1 
at every 0.001 s (i.e. every 20 integration time steps 
At) and is compared with the exact solution using a 
finite difference method. Figure 4 shows the random 
variation of the inlet concentration a constructed by 
a random number generation code. The results are 



Low dimensional modeling of flow reactors 

0.08 - 

tl 
6 0.07 7 
‘ij 

[ 0.08 1 

E 
0 
3 0.05 - 
E 

0.04 - 

0.03 - 
L 

O.O2f”‘.“““““” ,“‘I”,’ 
1000 2000 3000 4000 5000 

Time(x105sec) 

3319 

Fig. 4. The random variation of the inlet concentration a between 0.02 and 0.1. 

presented in Fig. 5 where concentration obtained both 
from the dynamic model [equation (3 l)] and from the 
original equation [equation (29)] are shown at various 
locations in the flow reactor. In Fig. 5, the solid lines 
indicate the solution from the dynamic model of Kar- 
hunen-Loeve Galerkin procedure and the dashed 
lines from the finite difference method. Since the initial 
value of the inlet concentration c( is 0.02 and the time- 
varying tl is always larger than or equal to 0.02, the 
concentration in the flow reactor starts to increase 

globally as time goes on. Figure 5 shows this gradual 
increase of concentration. Since location 1 in Fig. 5 is 
nearer to the inlet than location 3, the concentration 
rise at location 1 is finished at an earlier stage and 
reaches stationary state, where the concentration at 
that same point follows the fluctuation of the inlet 
concentration u. In Fig. 5, the exact solution by the 
finite difference method and the solution from the 
dynamic model of the Karhunen-Loive Galerkin pro- 
cedure are almost the same. 

___ Karhunen-Lowe Galerldn Method 

- - - - - - - Finite Dlfference Method 

0.000 b a ’ a ’ ’ c 
, I,, , , , , , , , , , , 1 ,‘{ 

1000 2000 3000 4000 5000 

Time@1 d set) 

Fig. 5. The temporal variations of concentration at selected points for the case A when a changes randomly 
(cf. Fig. 4). Solid lines (+-) are solutions from the Karhunen-Lo&ve Galerkin procedure and dashed 

lines (- - -) are exact solutions from the finite difference method. 
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Fig. 6. The temporal variations of concentration and temperature at selected points for the case B when,/ 

changes randomly between 500 and 1000 K, (a) concentration (b) temperature. 

Similarly, the dynamic model for case B is solved 
by a fourth-order Runge-Kutta method when the inlet 
temperature #“is changing randomly between 500 and 
1000 K, and& Fig. 6(a, b) the resulting concentration 
and temperature at selected points are presented and 
compared with exact values obtained by solving the 
original partial differential equations (29) and (36). 
In this case, the error is almost negligible, as in case A. 

This result is one clear demonstration that the Kar- 
hunen-Lo&e Galerkin procedure can efficiently 
reduce partial differential equations defined on com- 
plex geometries to dynamic models of a small degree 
of freedom, and the resulting low dimensional models 

can simulate the real systems with almost the same 
accuracy as the original partial differential equations. 
Moreover, the Karhunen-Lokve Galerkin method 
explained in the present paper can be applied to many 
other formidable nonlinear partial differential equa- 
tions in engineering and science, such as the Navier- 
Stokes equations, and these results shall be published 
as a separate paper later. 

3.2.2. The Llffect qfvu1ue.r qfsystem parameters. In 
this section, we investigate whether a dynamic model, 
made of empirical eigenfunctions based on snapshots 
taken with a reference set of parameter values (i.e. 
D, = 1.0, k,, = 1000, E = SOOO), can be applied to 
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Fig. 7. The temporal variation of errors of the reference dynamic model with respect to a random change 
of the inlet concentration when it is applied to systems with widely different values of parameters. 

cases of different sets of these parameter values. For 
convenience of communication, we call this dynamic 
model, based on the reference set of parameter values, 
the reference dynamic model. 

As a first illustration we chose case A, where we 
change the inlet concentration to control the outlet 
concentration, and apply the reference dynamic model 
to one case where the value of k,, is 100 instead of the 
original value of 1000, while values of other par- 
ameters are kept the same (case l), and to the other 
case where k, is 10000 and DA is 10 while E is still 
5000 (case 2). Figure 7 plots the results for both case 
1 and case 2 when the reference dynamic model uses 
15 and 30 empirical eigenfunctions, respectively. We 
define the error in the following manner : 

h h 
~~~~~ = i f 1 wA,KLO,khk) - W&exact(i, k) llcz x K) 

,=I k=, A.exact (4 k) I 

(37) 

where I and K are the maximum grid numbers in the 
i and k direction, respectively, and wi,KLo denotes the 
solution by means of the K-L Galerkin method and 

h wA.exact the finite difference solution of the original 
partial differential equation. 

This figure shows that the reference dynamic model 
employing 15 eigenfunctions, though predicts accu- 
rate results for the reference set of parameter values 
with less than 0.5% error, yields poor predictions for 
case 1 and case 2 (i.e. 1.5 and 4% errors, respectively). 
When the number of empirical eigenfunctions 
employed in the reference dynamic model is increased 
from 15 to 30, the errors do not decrease, except case 
1 whose value decreases from 1.5 to 0.8%. This implies 
that the eigenmodes of case 1 are very similar to those 

of the reference case, and it requires more eigen- 
functions to resolve the concentration field of case 1 
than the reference case, if the empirical eigen- 
functions of the reference case are employed. But it is 
apparent that new eigenmodes different from those of 
the reference case appear in case 2 due to a com- 
plicated interaction of convection, diffusion and reac- 
tion in the flow reactor. Because these new eigenmodes 
cannot be represented as linear combinations of the 
empirical eigenfunctions of the reference case, the 
error of case 2 does not decrease even though we 
employ more eigenfunctions in the reference dynamic 
model. In the present paper, this difficulty is overcome 
as follows. We obtain three sets of 200 snapshots with 
parameter values of case 1, case 2 and the reference 
case, respectively. To these 600 snapshots, the Kar- 
hunen-Lotve decomposition is applied to get a set 
of empirical eigenfunctions. These eigenfunctions are 
expected to resolve every important aspect of con- 
centration fields of the case 1 and case 2 as well as the 
reference case, since they are based on the snapshots 
of case 1, case 2 and the reference case. In Fig. 8 are 
shown the errors of case 1, case 2 and the reference 
case when a dynamic model based on 30 empirical 
eigenfunctions from these combined snapshots are 
used. This figure shows that the maximum error which 
arises for the case 2 is less than 0.6%. This is in 
contrast with the results of Fig. 7, where the error of 
case 2 is about 4% when employing 30 eigenfunctions 
of the reference case. Thus, we may conclude that 
this low dimensional dynamic model based on the 
combined snapshots can simulate the governing equa- 
tions of the flow reactor faithfully over the above- 
mentioned range of parameter values, and conse- 
quently can be employed in the parameter estimation 
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Fig. 8. The temporal variation of error\ of the dynamic model based on the combined snapshots with 
respect to a random change of the inlet concentration when it is applied to systems with widely different 

values of parameters. 

or identification if the parameter values to be esti- 
mated are within the same range. This also suggests 
a method of constructing low dimensional dynamic 
models by means of the Karhunen-Lo&e Gdlerkin 
procedure that are valid over a wide range of par- 
ameter values. 

3.3. Computational time of’ the Karhunm--L&w 
Galerkin procedure 

Until now we have described some details of the 
Karhunen-Lo&e Galerkin procedure. i.e. how to 
obtain appropriate snapshots, how to obtain efficient 
empirical eigenfunctions from these snapshots. how 
to construct low dimensional dynamic models by 
means of the K-L Galerkin procedure, and finally 
some results of the performance of these low dimen- 
sional dynamic models. From a numerical experiment 
we concluded that an 82 x 82 grid is sufficient for an 
accurate numerical solution of our governing con- 
vection-conduction equations [equations (29) and 
(36)] using the finite difference method. All the results 
of the present paper are thus based on numerical solu- 
tion employing 82 x 82 grid points. 

When problems of control and/or parameter esti- 
mation of distributed parameter systems of industrial 
applications are considered, it is very important to 
obtain low dimensional dynamic models before devis- 
ing and implementing any practical control or par- 
ameter estimation schemes. The actual implemen- 
tation of control or parameter estimation schemes 
requires repeated computations of dynamic models 
and one cannot expect on-line control or parameter 
estimation without faithful low dimensional dynamic 
models. 

Now it may be interesting to consider the CPU 
time required for each step in the Karhunen-Lo&e 
Galerkin procedure, and compare the CPU time of the 
resulting low dimensional model from the Karhunen- 
Loeve Galerkin procedure with that of the finite 
difference method when simulating the convection- 
conduction problem defined on a complex domain 
considered in the present work for a certain time per- 
iod (say. 5 s). We investigate the CPU time require- 
ment for the case A in this section. When Spare 10 
workstation is used, it requires 20 min 34 s to obtain 
400 snapshots. 9 min 21 s to obtain empirical eigen- 
functions from these snapshots, and 1 s to construct 
a low dimensional model of I5 degrees of freedom 
with these empirical eigenfunctions. Now, when the 
inlet concentration a is changing randomly as depicted 
in Fig. 4. it requires only 6 s to simulate this system 
during 5 s when the low dimensional model of I5 
degrees of freedom from the K--L Galerkin procedure 
is employed, which is contrasted with 3037 min 30 s 
required when a finite difference method is employed. 
This drastic reduction in computation time will facili- 
tate the implementation of many control schemes on 
distributed parameter systems of industrial appli- 
cations. 

4. CONCLUSION 

Sets of empirical eigenfunctions, that represent the 
dynamics of convection<onduction or convection- 
diffusion equations with chemical reactions defined 
on a two-dimensional complicated geometry 
efficiently, are obtained by means of the Karhunen- 
Lokve decomposition, and a Galerkin procedure 
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employing these empirical eigenfunctions (the Kar- 
hunen-Loeve Galerkin method) is used to reduce the 
partial differential equations to a small number of 
ordinary differential equations. The resulting set of 
ordinary differential equations, when compared with 
the original governing equations expressed as partial 
differential equations, could describe the system 
almost exactly. This technique of the Karhunen- 
Loeve Galerkin procedure can be applied not only 
to the convection+onduction type equations of the 
present work, but also to other general partial differ- 
ential equations (distributed parameter systems) that 
cannot be treated by the traditional Galerkin methods 
or orthogonal collocation due to the geometric com- 
plexity or nonlinearity. 

One of the most important steps in the Karhunen- 
Loeve Galerkin procedure is how to obtain appro- 
priate snapshots. The snapshots must include infor- 
mations about the dynamic characteristics of the sys- 
tem in order to yield empirical eigenfunctions that will 
represent the dynamics of the system faithfully. When 
the inlet concentration or temperature of the flow 
reactors changes as in our present work, the snapshots 
must include informations about the formation and 
decay of the concentration or thermal boundary layer 
in order to obtain efficient empirical eigenfunctions 
through the Karhunen-Lohe decomposition tech- 
nique. Only the dynamic model based on these empiri- 
cal eigenfunctions that contain informations about the 
formation and decay of the concentration or thermal 
boundary layer will be able to simulate the system 
faithfully. On the condition that the same snapshots 
are used to yield empirical eigenfunctions, the accu- 
racy of the dynamic model improves as the number 
of empirical eigenfunctions employed in the K-L 
Galerkin procedure increases. Especially when the 
inlet concentration or temperature of the system 
changes continuously, the concentration of thermal 
boundary layer always exists, and only dynamic 
models including many empirical eigenfunctions with 
small eigenvalues produce accurate results in this case. 

When a reference dynamic model which is based on 
reference values of the parameters is applied to the 
same flow reactor with widely different values of par- 
ameters, it may be difficult to yield accurate pre- 
dictions due to the new eigenmodes generated by a 
complicated interaction of convection, diffusion and 

reaction. In the present paper, this difficulty is over- 
come by combining various sets of snapshots with 
widely different values of parameters to construct eigen- 
functions. The low dimension dynamic model based 
on these eigenfunctions is shown to simulate the sys- 
tem over a wide range of parameter space and may be 
employed in the parameter estimation or identi- 
fication. 

In conclusion, as explained in the present paper, the 
Karhunen-Loke Galerkin procedure that employs 
empirical eigenfunctions from the Karhunen-Loeve 
decomposition easily reduces linear or nonlinear par- 
tial differential equations defined on complex geo- 
metries to dynamic models with a small degree of 
freedom. This technique can be applied not only to the 
convection<onduction type equations of the present 
work, but also to more complicated partial differential 
systems such as Navier-Stokes equations for the pur- 
pose of parameter estimation or system control. 
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